Inferring direct directed-information flow from multivariate nonlinear time series.
نویسندگان
چکیده
Estimating the functional topology of a network from multivariate observations is an important task in nonlinear dynamics. We introduce the nonparametric partial directed coherence that allows disentanglement of direct and indirect connections and their directions. We illustrate the performance of the nonparametric partial directed coherence by means of a simulation with data from synchronized nonlinear oscillators and apply it to real-world data from a patient suffering from essential tremor.
منابع مشابه
Detecting information flow direction in multivariate linear and nonlinear models
In this paper we present an approach to analyze the direction of information flow between time series involving bidirectional relations. The intuitive idea comes from a first study dedicated to the so-called phase slope index, which is a measure originally developed to detect unidirectional relations and is based on the complex coherence function. In order to detect bidirectional flows, we prop...
متن کاملUsing Conditional Mutual Information to Approximate Causality for Multivariate Physiological Time Series
Causality analytic techniques based on conditional mutual information are described. Causality analysis may be used to infer linear and nonlinear causal relations between selected brain regions, and can account for identified non-causal confounds. The analysis results in a directed graph whose nodes are brain regions, and whose edges represent information flow. This causal information measure i...
متن کاملInferring Weighted Directed Association Networks from Multivariate Time Series with the Small-Shuffle Symbolic Transfer Entropy Spectrum Method
Complex network methodology is very useful for complex system exploration. However, the relationships among variables in complex systems are usually not clear. Therefore, inferring association networks among variables from their observed data has been a popular research topic. We propose a method, named small-shuffle symbolic transfer entropy spectrum (SSSTES), for inferring association network...
متن کاملSimulation Study of Direct Causality Measures in Multivariate Time Series
Measures of the direction and strength of the interdependence among time series from multivariate systems are evaluated based on their statistical significance and discrimination ability. The best-known measures estimating direct causal effects, both linear and nonlinear, are considered, i.e., conditional Granger causality index (CGCI), partial Granger causality index (PGCI), partial directed c...
متن کاملKernel canonical-correlation Granger causality for multiple time series.
Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction between multiple time series, and the avoidance of potential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2009